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Preface

This book is intended to be an introductory text on the subject of electric circuits. It 
provides simple explanations of the basic concepts, followed by simple examples and exer-
cises. When necessary, detailed derivations for the main topics and examples are given to 
help readers understand the main ideas. MATLAB is a tool that can be used effectively 
in Electric Circuits courses. In this text, MATLAB is integrated into selected examples to 
illustrate its use in solving circuit problems. MATLAB can be used to check the answers or 
solve more complex circuit problems. This text is written for a two-semester sequence or a 
three-quarters sequence on electric circuits. 

  Suggested Course Outlines

The following is a list of topics covered in a typical Electric Circuits courses, with suggested 
course outlines.

ONE-SEMESTER OR -QUARTER COURSE
If Electric Circuits is offered as a one-semester or one-quarter course, Chapters 1 through 
12 can be taught without covering, or only lightly covering, sections 1.6, 2.10, 2.11, 3.6, 4.7, 
5.6, 5.7, 5.8, 6.7, 7.6, 7.7, 8.8, 8.9, 9.9, 9.10, 10.12, 11.7, 12.5, 12.6, and 12.7.  

TWO-SEMESTER OR -QUARTER COURSES
For two-semester Electric Circuit courses, Chapters 1 through 8, which cover dc circuits, 
op amps, and the responses of first-order and second-order circuits, can be taught in the 
first semester. Chapters 9 through 20, which cover alternating current (ac) circuits, Laplace 
transforms, circuit analysis in the s-domain, two-port circuits, analog filter design and imple-
mentation, Fourier series, and Fourier transform, can then be taught in the second semester. 

THREE-QUARTER COURSES
For three-quarter Electric Circuit courses, Chapters 1 through 5, which cover dc circuits and 
op amps, can be taught in the first quarter; Chapters 6 through 13, which cover the responses 
of first-order and second-order circuits and ac circuits, can be taught in the second quarter, 
and Chapters 14 through 20, which cover Laplace transforms, circuit analysis in the s-do-
main, two-port circuits, analog filter design and implementation, Fourier series, and Fourier 
transform, can be taught in the third quarter.

Depending on the catalog description and the course outlines, instructors can pick 
and choose the topics covered in the courses that they teach. Several features of this text 
are listed next.

  Features

After a topic is presented, examples and exercises follow. Examples are chosen to expand 
and elaborate the main concept of the topic. In a step-by-step approach, details are worked 
out to help students understand the main ideas.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203

.netww.downloadslid



 PREFACE   xi

In addition to analyzing RC, RL, and RLC circuits connected in series or parallel in 
the time domain and the frequency domain, analyses of circuits different from RC, RL, and 
RLC circuits and connected other than in series and parallel are provided. Also, general 
input signals that are different from unit step functions are included in the analyses.

In the analog filter design, the specifications of the filter are translated into its trans-
fer function in cascade form. From the transfer function, each section can be designed with 
appropriate op amp circuits. The normalized component values for each section are found 
by adopting a simplification method (equal R equal C or unity gain). Then, magnitude 
scaling and frequency scaling are used to find the final component values. The entire design 
procedure, from the specifications to the circuit design, is detailed, including the PSpice 
simulation used to verify the design.

Before the discussion of Fourier series, orthogonal functions and the representation 
of square integrable functions as a linear combination of a set of orthogonal functions are 
introduced. The set of orthogonal functions for Fourier series representation consists of 
cosines and sines. The Fourier coefficients for the square pulse train, triangular pulse train, 
sawtooth pulse train, and rectified sines and cosines are derived. The Fourier coefficients of 
any variation of these waveforms can be found by applying the time-shifting property and 
finding the dc component.

MATLAB can be an effective tool in solving problems in electric circuits. Simple 
functions such as calculating the equivalent resistance or impedance of parallel connec-
tion of resistors, capacitors, and inductors; conversion from Cartesian coordinates to polar 
coordinates; conversion from polar coordinates to Cartesian coordinates; conversion from 
the wye configuration to delta configuration; and conversion from delta configuration to 
wye configuration provide accurate answers in less time. These simple functions can be part 
of scripts that enable us to find solutions to typical circuit problems. 

The complexity of taking the inverse Laplace transforms increases as the order 
increases. MATLAB can be used to solve equations and to find integrals, transforms, 
inverse transforms, and transfer functions. The application of MATLAB to circuit analysis 
is demonstrated throughout the text when appropriate. For example, after finding inverse 
Laplace transforms by hand using partial fraction expansion, answers from MATLAB are 
provided as a comparison.

Examples of circuit simulation using OrCAD PSpice and Simulink are given at the 
end of each chapter. Simulink is a tool that can be used to perform circuit simulations. In 
Simulink, physical signals can be converted to Simulink signals and vice versa. Simscapes 
include many blocks that are related to electric circuits. Simulink can be used in computer 
assignments or laboratory experiments. 

The Instructor’s Solution Manual for the exercises and end-of-chapter problems is 
available for instructors. This manual includes MATLAB scripts for selected problems as a 
check on the accuracy of the solutions by hand.

  Overview of Chapters

In Chapter 1, definitions of voltage, current, power, and energy are given. Also, independent 
voltage source and current source are introduced, along with dependent voltage sources and 
current sources.

In Chapter 2, nodes, branches, meshes, and loops are introduced. Ohm’s law is explained. 
Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), the voltage divider rule, 
and the current divider rule are explained with examples. 

In Chapter 3, nodal analysis and mesh analysis are discussed in depth. The nodal analysis 
and mesh analysis are used extensively in the rest of the text. 

Chapter 4 introduces circuit theorems that are useful in analyzing electric circuits and 
electronic circuits. The circuit theorems discussed in this chapter are the superposition 
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principle, source transformations, Thévenin’s theorem, Norton’s theorem, and maximum 
power transfer.

Chapter 5 introduces op amp circuits. Op amp is a versatile integrated circuit (IC) chip 
that has wide-ranging applications in circuit design. The concept of the ideal op amp model 
is explained, along with applications in sum and difference, instrumentation amplifier, 
and current amplifier. Detailed analysis of inverting configuration and noninverting 
configuration is provided.

In Chapter 6, the energy storage elements called capacitors and inductors are discussed. 
The current voltage relation of capacitors and inductors are derived. The energy stored on 
the capacitors and inductors are presented. 

In Chapter 7, the transformation of RC and RL circuits to differential equations and 
solutions of the first-order differential equations to get the responses of the circuits 
are presented. In the general first-order circuits, the input signal can be dc, ramp signal, 
exponential signal, or sinusoidal signal. 

In Chapter 8, the transformation of series RLC and parallel RLC circuits to the second-
order differential equations, as well as solving the second-order differential equations to 
get the responses of the circuits are presented. In the general second-order circuits, the 
input signal can be dc, ramp signal, exponential signal, or sinusoidal signal.

Chapter 9 introduces sinusoidal signals, phasors, impedances, and admittances. Also, 
transforming ac circuits to phasor-transformed circuits is presented, along with analyzing 
phasor transformed circuits using KCL, KVL, equivalent impedances, delta-wye 
transformation, and wye-delta transformation. 

The analysis of phasor-transformed circuits is continued in Chapter 10 with the 
introduction of the voltage divider rule, current divider rule, nodal analysis, mesh analysis, 
superposition principle, source transformation, Thévenin equivalent circuit, Norton 
equivalent circuit, and transfer function. This analysis is similar to the one for resistive 
circuits with the use of impedances.

Chapter 11 presents information on ac power. The definitions of instantaneous power, 
average power, reactive power, complex power, apparent power, and power factor are also 
given, and power factor correction is explained with examples. 

As an extension of ac power, the three-phase system is presented in Chapter 12. The 
connection of balanced sources (wye-connected or delta-connected) to balanced loads 
(wye-connected or delta connected) are presented, both with and without wire impedances. 

Magnetically coupled circuits, which are related to ac power, are discussed in Chapter 13.  
Mutual inductance, induced voltage, dot convention, linear transformers, and ideal 
transformers are introduced.

The Laplace transform is introduced in Chapter 14. The definition of the transform, region 
of convergence, transform, and inverse transform are explained with examples. Various 
properties of Laplace transform are also presented with examples. 

The discussion on Laplace transform is continued in Chapter 15. Electric circuits can 
be transformed into an s-domain by replacing voltage sources and current sources to 
the s-domain and replacing capacitors and inductors to impedances. The circuit laws 
and theorems that apply to resistive circuits also apply to s-domain circuits. The time 
domain signal can be obtained by taking the inverse Laplace transform of the s-domain 
representation. The differential equations in the time domain are transformed to algebraic 
equations in the s-domain. The transfer function in the s-domain is defined as the ratio 
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of the output signal in the s-domain to the input signal in the s-domain. The concept of 
convolution is introduced with a number of examples. Also, finding the convolution using 
Laplace transforms are illustrated in the same examples. Plotting the magnitude response 
and phase response of a circuit or a system using the Bode diagram is introduced.

The first-order and the second-order analog filters that are building blocks for the 
higher-order filters are presented in Chapter 16. The filters can be implemented by 
interconnecting passive elements consisting of resistors, capacitors, and inductors. 
Alternatively, filters can be implemented utilizing op amp circuits. Sallen and Key circuits 
for implementing second-order filters are discussed as well, along with design examples. 

The discussion on analog filter design is extended in Chapter 17. A filter is designed to 
meet the specifications of the filter. The transfer function that satisfies the specification 
is found. From the transfer function, the corner frequency and Q value can be found. 
Then, the normalized component values and scaled component values are found. PSpice 
simulations can be used to verify the design.

Orthogonal functions and the representation of signals as a linear combination of a set 
of orthogonal functions are introduced in Chapter 18. If the set of orthogonal functions 
consists of harmonically related sinusoids or exponential functions, the representation is 
called the Fourier series. Fourier series representation of common signals, including the 
square pulse train, triangular pulse train, sawtooth waveform, and rectified cosine and sine, 
are presented in detail, with examples. The derivation and application of the time-shifting 
property of Fourier coefficients are provided. In addition, the application of the Fourier 
series representation in solving circuit problems are presented, along with examples. 

As the period of a periodic signal is increased to infinity, the signal becomes nonperiodic, 
the discrete line spectrums become a continuous spectrum, and multiplying the Fourier 
coefficients by the period produces the Fourier transform, as explained in Chapter 19. 
Important properties of the Fourier transform, including time shifting, frequency shifting, 
symmetry, modulation, convolution, and multiplication, are introduced, along with 
interpretation and examples. 

Two-port circuits are defined and analyzed in Chapter 20. Depending on which of the 
parameters are selected as independent variables, there are six different representations 
for two-port circuits. The coefficients of the representations are called parameters. The six 
parameters (z, y, h, g, ABCD, b) for two-port circuits are presented along with examples. 
The conversion between the parameters and the interconnection of parameters are 
provided in this chapter.

  Instructor Resources

Cengage Learning’s secure, password-protected Instructor Resource Center contains help-
ful resources for instructors who adopt this text. These resources include Lecture Note 
Microsoft PowerPoint slides, test banks, and an Instructor’s Solution Manual, with detailed 
solutions to all the problems from the text. The Instructor Resource Center can be accessed 
at https://login.cengage.com. 

  MindTap Online Course

Electric Circuits is also available through MindTap, Cengage Learning’s digital course plat-
form. The carefully crafted pedagogy and exercises in this textbook are made even more 
effective by an interactive, customizable eBook, automatically graded assessments, and a 
full suite of study tools. 
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As an instructor using MindTap, you have at your fingertips the full text and a unique 
set of tools, all in an interface designed to save you time. MindTap makes it easy for instruct-
ors to build and customize their course so that they can focus on the most relevant mater-
ial while also lowering costs for students. Stay connected and informed through real-time 
student tracking that provides the opportunity to adjust your course as needed based on 
analytics of interactivity and performance. End-of-chapter assessments test students’ know-
ledge of topics in each chapter. In addition, a curated collection of lecture videos helps 
students better understand key concepts as they progress through the course.

HOW DOES MINDTAP BENEFIT INSTRUCTORS?
 ● Instructors can build and personalize their courses by integrating their own content 

into the MindTap Reader (like lecture notes or problem sets to download) or pull 
from sources such as Really Simple Syndication (RSS) feeds, YouTube videos, websites, 
and more. Control what content students see with a built-in learning path that can be 
customized to your syllabus.

 ● MindTap saves time by providing instructors and their students with automatically 
graded assignments and quizzes. These problems include immediate, specific feedback 
so students know exactly where they need more practice.

 ● The Message Center helps instructors to contact students quickly and easily from 
MindTap. Messages are communicated directly to each student via the communication 
medium (email, social media, or even text messages) designated by the student.

 ● StudyHub is a valuable tool that allows instructors to deliver important information 
and empowers students to personalize their experience. Instructors can choose to 
annotate the text with notes and highlights, share content from the MindTap Reader, 
and create flashcards to help their students focus and succeed.

 ● The Progress App lets instructors know exactly how their students are doing (and 
where they might be struggling) with live analytics. They can see overall class 
engagement and drill down into individual student performance, enabling them to 
adjust their course to maximize student success.
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HOW DOES MINDTAP BENEFIT YOUR STUDENTS?
 ● The MindTap Reader adds the ability to have content read aloud, to print from the 

MindTap Reader, and to take notes and highlight text, while also capturing them 
within the linked StudyHub App. 

 ● The MindTap Mobile App keeps students connected with alerts and notifications, 
while also providing them with on-the-go study tools like flashcards and quizzing, 
helping them manage their time efficiently. 

 ● Flashcards are prepopulated to provide a jump start on studying, and students and 
instructors also can create customized cards as they move through the course.

 ● The Progress App allows students to monitor their individual grades, as well as their 
performance level compared to the class average. This not only helps them stay on 
track in the course, but also motivates them to do more, and ultimately to do better.

 ● The unique StudyHub is a powerful, single-destination studying tool that empowers 
students to personalize their experience. They can quickly and easily access all notes 
and highlights marked in the MindTap Reader, locate bookmarked pages, review notes 
and flashcards shared by their instructor, and create custom study guides.

For more information about MindTap for Engineering, or to schedule a demonstra-
tion, please call (800) 354-9706 or email higheredcs@cengage.com. For instructors outside 
the United States, visit http://www.cengage.com/contact/ to locate your regional office.
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1

Chapter 1

Voltage, Current,  
Power, and Sources

 1.1 Introduction

The seven base units of the International System of Units (SI), along with derived units rel-
evant to electrical and computer engineering, are presented in this chapter. The definitions 
of the terms voltage, current, and power are given as well. 

A voltage source with voltage Vs provides a constant potential difference to the circuit 
connected between the positive terminal and the negative terminal. A current source with 
current Is provides a constant current of Is amperes to the circuit connected to the two termin-
als. If the voltage from the voltage source is constant with time, the voltage source is called 
the direct current (dc) source. Likewise, if the current from the current source is constant 
with time, the current source is called the dc source. If the voltage from the voltage source is 
a sinusoid, the voltage source is called alternating current (ac) voltage source. Likewise, if the 
current from the current source is a sinusoid, the current source is called the ac current source.

The voltage or current on the dependent sources depends solely on the controlling 
voltage or controlling current. Dependent sources are introduced along with circuit symbols.

The elementary signals that are useful throughout the text are introduced next. The 
elementary signals are Dirac delta function, step function, ramp function, rectangular pulse, 
triangular pulse, and exponential decay.

 1.2 International System of Units

The International System of Units (SI) is the modern form of the metric system derived 
from the meter-kilogram-second (MKS) system. The SI system is founded on seven base 
units for the seven quantities assumed to be mutually independent. Tables 1.1–1.6, which 
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give information on the SI system, come from the NIST Reference on Constants, Units, 
and Uncertainty (http://physics.nist.gov/cuu/Units/units.html), the official reference of the 
National Institute of Standards and Technology. 

A meter is defined as the length of a path traveled by light in a vacuum during a time 
interval of 1͞299,792,458 [(≈ 1͞(3 3 108)] of a second. 

A kilogram is equal to the mass of the international prototype of the kilogram.

TABLE 1.1

SI Base Units.

Base Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of a substance mole mol
Luminous intensity candela cd

TABLE 1.2

Examples of SI 

Derived Units.

Derived Quantity Name Symbol

Area square meter m2

Volume cubic meter m3

Speed, velocity meter per second m͞s
Acceleration meter per second squared m͞s2

Wave number reciprocal meter m21

Mass density kilogram per cubic meter kg͞m3

Specific volume cubic meter per kilogram m3͞kg
Current density ampere per square meter A͞m2

Magnetic field strength ampere per meter A͞m
Luminance candela per square meter cd͞m2

TABLE 1.3

SI Derived Units 

with Special 

Names and 

Symbols.

Derived Quantity Name Symbol
Expression in terms 
of other SI units 

Plane angle radian rad —
Solid angle steradian sr —
Frequency hertz Hz —
Force newton N —
Pressure, stress pascal Pa N͞m2

Energy, work, quantity of heat joule J N ? m
Power, radiant flux watt W J͞s
Electric charge, quantity  

of electricity
coulomb C —

Electric potential difference, volt V W/A
electromotive force

Capacitance farad F C͞V
Electric resistance ohm V V͞A
Electric conductance siemens S A͞V
Magnetic flux weber Wb V ? s
Magnetic flux density tesla T Wb͞m2

Inductance henry H Wb͞A
Celsius temperature degrees Celsius 8C —
Luminous flux lumen lm cd ? sr
Illuminance lux lx lm͞m2
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TABLE 1.4

Examples of SI 

Derived Units 

with Names 

and Symbols 

(Including 

Special Names 

and Symbols.)

Derived Quantity Name Symbol

Dynamic viscosity Pascal second Pa ? s
Moment of force newton meter N ? m
Surface tension newton per meter N͞m
Angular velocity radian per second rad͞s
Angular acceleration radian per second squared rad͞s2

Heat flux density, irradiance watt per square meter W͞m2

Thermal conductivity watt per meter kelvin W͞(m ? K)
Energy density joule per cubic meter J͞m3

Electric field strength volt per meter V͞m
Electric charge density coulomb per cubic meter C͞m3

Electric flux density coulomb per square meter C͞m2

Permittivity farad per meter F͞m
Permeability henry per meter H͞m
Exposure (X- and ␥-rays) coulomb per kilogram C͞kg

TABLE 1.5

Metric Prefixes.

Prefix Symbol Magnitude

yocto y 10224

zepto z 10221

atto a 10218

femto f 10215

pico p 10212

nano n 1029

micro ␮ 1026

milli m 1023

centi c 1022

deci d 1021

deka da 101

hecto h 102

kilo k 103

mega M 106

giga G 109

tera T 1012

peta P 1015

exa E 1018

zetta Z 1021

yotta Y 1024

TABLE 1.6

Units Outside 

the SI That Are 

Accepted for 

Use with the SI 

System.

Name Symbol Value in SI Units

Minute (time) min 1 min 5 60 s
Hour h 1 h 5 60 min 5 3600 s
Day d 1 d 5 24 h 5 86,400 s
Degree (angle) ° 1° 5 (␲/180) rad
Minute (angle) 9 19 5 (1͞60)° 5 (␲͞10,800) rad
Second (angle) 0 10 5 (1͞60)9 5 (␲͞648,000) rad
Liter L 1 L 5 1 dm3 5 1023 m3

Metric ton t 1 t 5 1000 kg
Neper Np 1 Np 5 20 log10(e) dB 5 20͞ln(10) dB
Bel B 1 B 5 (1͞2) ln(10) Np, 1 dB 5 0.1 B
Electronvolt eV 1 eV 5 1.60218 3 10219 J
Unified atomic mass unit u 1 u 5 1.66054 3 10227 kg
Astronomical unit ua 1 ua 5 1.49598 3 1011 m
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A second is the duration of 9,192,631,770 periods of the radiation corresponding to 
the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

An ampere is the constant current which, if maintained in two straight parallel con-
ductors of infinite length, of negligible circular cross section, and placed 1 meter apart in 
vacuum, would produce between these conductors a force equal to 2 3 1027 newtons per 
meter of length.

A kelvin, is 1͞273.16 of the thermodynamic temperature of the triple point of water.
A mole is the amount of substance of a system that contains as many elementary 

entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is mol. When the mole 
is used, the elementary entities must be specified; they may be atoms, molecules, ion, elec-
trons, other particles, or specified groups of such particles.

The candela is the luminous intensity, in a given direction, of a source that emits mono-
chromatic radiation of frequency 540 3 1012 hertz (Hz) and that has the radiant intensity in 
that direction of 1͞683 watt per steradian.

 1.3 Charge, Voltage, Current, and Power

1.3.1 ELECTRIC CHARGE
Atoms are the basic building blocks of matter. The nucleus of atoms consists of protons and 
neutrons. Electrons orbit around the nucleus. Protons are positively charged, and electrons 
are negatively charged, while neutrons are electrically neutral. The amount of charge on the 
proton is given by 

e 5 1.60217662 3 10219
  C

Here, the unit for charge is in coulombs (C).

2e 5 21.60217662 3 10219
  C

Notice that the charge is quantized as the integral multiple of e. Since there are equal 
numbers of protons and electrons in an atom, it is electrically neutral. When a plastic is 
rubbed by fur, some electrons from the fur are transferred to the plastic. Since the fur lost 
electrons and the plastic gained them, the former is positively charged and the latter neg-
atively charged. When the fur and the plastic are placed close together, they attract each 
other. Opposite charges attract, and like charges repel. However, since the electrons and 
protons are not destroyed, the total amount of charge remains the same. This is called the 
conservation of charge.

1.3.2 ELECTRIC FIELD
According to Coulomb’s law, the magnitude of force between two charged bodies is pro-
portional to the charges Q and q and inversely proportional to the distance squared; that is,

F 5
1

4␲«
 
Qq

r2
 (1.1)

Here, « is permittivity of the medium. The permittivity of free space, «0, is given by 

«0 5
1

4␲c21027
  (Fym) 5 8.8541878176 3 10212

 (Fym) (1.2)

Here, c is the speed of light in the vacuum, given by c 5 299,792,458 m͞s ≈ 3 3 108 m͞s.   
The unit for permittivity is farads per meter (F͞m). The direction of the force coincides with 
the line connecting the two bodies. If the charges have the same polarity, the two bodies 

F 5
1

4␲«

Qq

r2
(1.1)

«0 5
1

4␲c21027
  (FyF m) 5 8.8541878176 3 10212 (FyF m) (1.2)
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repel each other. On the other hand, if the charges have the opposite polarity, they attract 
each other.

If a positive test charge with magnitude q is brought close to a positive point charge 
with magnitude Q, the test charge will have a repulsive force. The magnitude of the force is 
inversely proportional to the distance squared between the point charge and the test charge. 
The presence of the point charge creates a field around it, where charged particles experience 
force. This is called an electric field, which is defined as the force on a test charge q as the 
charge q decreases to zero; that is,

E 5 lim 
qS0

F
q

 (V͞m) (1.3)

The electric field is a force per unit charge. The electric field E is a vector quantity whose 
direction is the same as that of the force. Figure 1.1 shows the electric field for a positive 
point charge and charged parallel plates.

E 5 lim
qS0

F
q

(V͞m) (1.3)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

dE

E

BA

rA rB

Q

2Q

Q

(a) (b)

FIGURE 1.1

Electric field for  
(a) a point charge and 

(b) parallel plates.

If an object with charge q is placed in the presence of electric field E, the object will 
experience a force as follows:

F 5 qE (1.4)

For a positive point charge Q, the electric field is given by

E 5
1

4␲«
 
Q

r2
ar (1.5)

where ar is a unit vector in the radial direction from the positive point charge Q. For paral-
lel plates with area S per plate, distance d between the plates, the electric field is constant 
within the plates and the magnitude of the electric field is given by

E 5
Q

«S
 (1.6)

The direction of the field is from the plate with positive charges to the plate with neg-
ative charges, as shown in Figure 1.1(b).

1.3.3 VOLTAGE
If a positive test charge dq is moved against the electric field created by a positive charge, 
an external agent must apply work to the test charge. Let dwAB be the amount of the work 

F 5 qE (1.4)

E 5
1

4␲«

Q

r2
ar (1.5)

E 5
Q

«S
(1.6)
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needed to move the test charge from B (initial) to A (final). Here, dwAB is the potential 
energy in joules. Then, the potential difference between points A and B is defined as the 
work done per unit charge against the force; that is,

vAB 5 vA 2 vB 5
dwAB

dq
 (J͞C) (1.7)

The unit for the potential difference is joules per coulomb, which is also called a 
volt (V):

1 V 5 1 J͞C

The potential difference between A and B is called voltage. The potential difference 
between points A and B is given by

vAB 5 vA 2 vB 5 2#
A

B

E ? d/ (1.8)

The negative sign implies that moving against the electric field increases the potential. 
For a positive point charge Q at origin with an electric field given by Equation (1.5), the 
potential difference between two points A and B with distances rA and rB, respectively, from 
Q is given by

vAB 5 vA 2 vB 5 2#
rA

rB

1

4␲«
 
Q

r2
 dr 5 2

Q

4␲«
 121

r 2*
rA

rB

5
Q

4␲«
 1 1

rA
2

1

rB
2  V (1.9)

Notice that the integral of 1/r2 is 21/r. If rB is infinity, the potential difference is

vAB 5 vA 2 vB 5 vA 5
Q

4␲«rA
   V (1.10)

The potential is zero at infinity. This is a reference potential. For the parallel plates 
shown in Figure 1.1(b), the potential difference between A and B is

v 5 Ed 5
Q

«S
 d (1.11)

If the potential at B is set at zero (vB 5 0), the potential at point A is given by

vA 5
dwA

dq
 (J/C) (1.12)

or simply

v 5
dw
dq

 (J/C) (1.13)

The potential difference v is called voltage. A battery is a device that converts chem-
ical energy to electrical energy. When a positive charge is moved from the negative terminal 
to the positive terminal through the 12-V battery, the battery does 12 joules of work on each 
unit charge. The potential energy of the charge increases by 12 joules. The battery provides 
energy to the rest of the circuit.

vAB 5 vA 2 vB 5
dwAB

dq
(J͞C) (1.7)

vAB 5 vA 2 vB 5 2#
A

B

E ? d/ (1.8)

vAB 5 vA 2 vB 5 2#
rAr

rB

1

4␲«

Q

r2
dr 5 2

Q

4␲« 121

r 2*
rAr

rB

5
Q

4␲« 1 1

rAr
2

1

rBr 2 V (1.9)

vAB 5 vA 2 vB 5 vA 5
Q

4␲«rAr
  V (1.10)

v 5 Ed 5
Q

«S
d (1.11)

vA 5
dwA

dq
(J/C) (1.12)

v 5
dw
dq

(J/C) (1.13)
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1.3.4 CURRENT
In the absence of an electric field, the free electrons in the conduction band of conduct-
ors such as copper wire make random movements. The number of electrons crossing a 
cross-sectional area of the copper wire from left to right will equal the number of elec-
trons crossing the same cross-sectional area from right to left. The net number of electrons 
crossing this area will be zero. When an electric field is applied along the copper wire, the 
negatively charged electrons will move toward the direction of higher potential. The cur-
rent is defined as the total amount of charge q passing through a cross-sectional area in  
t seconds; that is,

I 5
q

t
 (1.14)

The unit for the current is coulombs per second (C/s) or amperes (A). If the amount 
of charge crossing the area changes with time, the current is defined as

i(t) 5
dq(t)

dt
 (1.15)

The direction of current is defined as the direction of positive charges. Since the 
charge carriers inside the conductors are electrons, the direction of electrons is opposite to 
the direction of the current. Figure 1.2 shows the directions of the electric field, current, and 
electron inside a conductor.

i(t) 5
dq(t)

dt
(1.15)

E

I
e

FIGURE 1.2

The directions of  
E, I, and e.

The charge transferred between time t1 and t2 can be obtained by integrating the cur-
rent from t1 and t2; that is,

q 5 #
t2

t1

i(␭)d␭ (1.16)q 5 #
t2tt

t1

i(␭)d␭dd (1.16)

The charge flowing into a circuit element for t $ 0 is given by

q(t) 5 2 3 1023(1 2 e21000t) coulomb 

Find the current flowing into the element for t $ 0.

i(t) 5
dq(t)

dt
5 2 3 1023 3 1000e21000t

 
 A 5 2e21000t

 
 A for t $ 0

EXAMPLE 1.1

I 5
q

t
(1.14)
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The current flowing into a circuit element is given by

i(t) 5 5 sin(2␲10t) mA 

for t $ 0. Find the charge flowing into the device for t $ 0. Also, find the total charge 
entered into the device at t 5 0.05 s.

q(t) 5 #
t

0

 i(␭)d␭ 5
5 3 1023

2␲10
 f1 2  cos(2␲10t)g

5 7.9577 3 1025 f1 2  cos(2␲10t)g coulomb

At t 5 0.05 s, we have

q(0.05) 5 1.5915 3 1024 f1 2  cos(2␲10 3 0.05)g 5 1.5915 3 1024 coulombs

Exercise 1.1

The charge flowing into a circuit element for t $ 0 is given by

q(t) 5 4 3 1023e22000t coulomb 

Find the current flowing into the element for t $ 0.

Answer:

i(t) 5
dq(t)

dt
5 28e22000t A for t $ 0

EXAMPLE 1.2

Exercise 1.2

The current flowing into a circuit element is given by

i(t) 5 5 cos(2␲10t) mA 

for t $ 0. Find the charge flowing into the device for t $ 0. Also, find the total charge 
entered into the device at t 5 0.0125 s.

Answer: 

q(t) 5 #
t

0

 i(␭)d␭ 5
5 3 1023

2␲10
 sin(2␲10t) 5 7.9577 3 1025 sin(2␲10t) coulombs

q(0.0125) 5 7.9577 3 1025 sin(2␲10 3 0.0125) 5 5.6270 3 1025 coulombs
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1.3.5 POWER
The battery provides a constant potential difference (voltage) of v volts from the negative 
terminal to the positive terminal. When a positive charge dq is moved from the negative 
terminal to the positive terminal through the battery, the potential energy is increased by  
dq v 5 dw. When the positive charge dq moves through the rest of the circuit from the posi-
tive terminal to the negative terminal, the potential energy is decreased by the same amount  
(dq v). The rate of potential energy loss is given by

p 5
dw
dt

5
dq v

dt
5 iv (1.17)

The rate of energy loss is defined as power. Equation (1.17) can be rewritten as

dw 5 dq v 5 p dt (1.18)

The energy is the product of power and time. If Equation (1.18) is integrated as a 
function of time, we get

w(t) 5 #
t

2`

p(␭)d␭ (1.19)

According to Equation (1.19), the energy is the integral of power. As shown in Equa-
tion (1.17), power is the derivative of energy. Taking the derivative of Equation (1.19),  
we obtain

p(t) 5
dw(t)

dt
 (1.20)

If the voltage and the current are time-varying, the power is also time-varying. If the 
voltage and current are expressed as a function of time, Equation (1.17) can be written as

p(t) 5 i(t)v(t) (1.21)

The power given by Equation (1.21) is called instantaneous power. According to 
Equation (1.21), instantaneous power is the product of current and voltage as a function 
of time. In the passive sign convention, if the direction of current is from the positive ter-
minal of a device, through the device, and to the negative terminal of the device [as shown 
in Figure 1.3(a)], the power is positive. On the other hand, if the current leaves the positive 
terminal of a device, flows through the rest of the circuit, and enters the negative terminal 
of the device [as shown in Figure 1.3(b)], the power is negative. 

If power is positive [i.e., p(t) . 0], the element is absorbing power. On the other 
hand, if power is negative, the element is delivering (supplying) power. In a given circuit, 
the total absorbed power equals the total delivered or supplied power. This is called con-
servation of power. 

p 5
dw
dt

5
dq v

dt
5 iv (1.17)

dw 5 dq v 5 p dt (1.18)

w(t) 5 #
t

2`

p(␭)d␭dd (1.19)

p(t) 5 i(t)v(t) (1.21)

i(t)

1

v(t)

2

(a)

i(t)

1

v(t)

2

(b)

FIGURE 1.3

(a) Power is positive.  
(b) Power is negative.

Let the voltage across an element be v(t) 5 100 cos(2␲60t) V, and the current though the element from positive 
terminal to negative terminal be i(t) 5 5 cos(2π60t) A for t $ 0. Find the instantaneous power p(t) and plot p(t). 

EXAMPLE 1.3

continued

p(t) 5
dw(t)

dt
(1.20)
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p(t) 5 i(t) v(t) 5 5 cos(2␲60t) 3 100 cos(2␲60t) 5 500 cos2(2␲60t) 
5 250 1 250 cos(2␲ 3 120t) W

The power p(t) is shown in Figure 1.4. Since p(t) $ 0 for all t, the element is not 
delivering power any time. On average, the element absorbs 250 W of power.

20.015 20.01 20.005 0 0.005 0.01 0.015
0

100

200

300

400

500

t (s)

p
(t

) 
(W

)
PowerFIGURE 1.4

Plot of p(t).

Exercise 1.3

Let the voltage across an element be v(t) 5 100 cos(2p60t) V and the current though the element from positive 
terminal to negative terminal be i(t) 5 6 sin(2p60t) A for t $ 0. Find the instantaneous power p(t) and plot p(t).

p(t) 5 i(t) v(t) 5 6 sin(2␲60t) 3 100 cos(2␲60t) 5 300 sin(2␲120t) W.

The power p(t) is shown in Figure 1.5. Since p(t) . 0 half of the time and p(t) , 0 the 
other half of the time, the element absorbs power for 1͞240 s, then delivers power for 
the next 1͞240 s, and then repeats the cycle. On average, the element does not absorb 
any power.

20.015 20.01 20.005 0 0.005 0.01 0.015
2300

2200

2100

0

100

200

300

t (s)

p
(t

) 
(W

)

Power
FIGURE 1.5

Power p(t).

Example 1.3 continued

 1.4 Independent Sources

A voltage source with voltage Vs provides a constant potential difference to the circuit con-
nected between the positive terminal and the negative terminal. The circuit notations for 
the voltage source are shown in Figure 1.6.

If a positive charge Dq is moved from the negative terminal to the positive terminal 
through the voltage source, the potential energy of the charge is increased by DqVs. If a 
negative charge with magnitude Dq is moved from the positive terminal to the negative 
terminal through the voltage source, the potential energy of the charge is increased by DqVs. 
A battery is an example of a voltage source. 

2

1
1

2

Vs Vs

(a) (b)

FIGURE 1.6

Circuit symbols for 
voltage sources.
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A current source with current Is provides a constant current of Is amperes to the  
circuit connected to the two terminals. The circuit notation for the current source is shown 
in Figure 1.7.

1.4.1 DIRECT CURRENT SOURCES AND ALTERNATING  
CURRENT SOURCES
If the voltage from the voltage source is constant with time, the voltage source is called the 
direct current (dc) source. Likewise, if the current from the current source is constant with 
time, the current source is called the direct current (dc) source. 

If the voltage from the voltage source is a sinusoid, as shown in Figure 1.8, the 
voltage source is called alternating current (ac) voltage source. Likewise, if the current 
from the current source is a sinusoid, the current source is called alternating current (ac) 
current source. A detailed discussion of ac signals is given in Chapter 9. The circuit nota-
tion for an ac voltage source and ac current source are shown in Figure 1.9. The phase is 
given in degrees. The circuit notation for dc voltage shown in Figure 1.6(a) and the circuit 
notation for dc current shown in Figure 1.7 are also used for ac voltage and ac current, 
respectively.

22 T 21.5 T 2T 20.5 T 0 0.5 T T 1.5 T 2 T
2Vm

0

Vm

t (s)

v(
t)

 (
V

)

FIGURE 1.8

Plot of a cosine 
wave with period T, 

amplitude Vm, and 
phase zero.

Is

FIGURE 1.7

A circuit symbol for 
the current source.

When dc voltage sources are connected in series, they can be com-
bined into a single equivalent dc voltage source, as shown in Figure 1.10, 
where V3 5 V1 1 V2 5 4.5 V 1 7.5 V 5 12 V. If there are other com-
ponents, such as the resistors between V1 and V2 in the circuit shown 
in Figure 1.10, the voltage sources can be combined, so long as all the 
components are connected in series. Resistors are discussed further in 
Chapter 2.

When dc current sources are connected in parallel, they can  
be combined into a single equivalent dc current source, as shown in 
Figure 1.11, where I3 5 I1 1 I2 5 3 A 1 5 A 5 8 A. If other com-
ponents such as resistors are connected in parallel to I1 and I2 in the 
circuit shown in Figure 1.11, the current sources can be combined, 
so long as all the components are connected in parallel between the  
same points.

FIGURE 1.10

An equivalent voltage source.

4.5 Vdc

7.5 Vdc

2

1 V1

12 Vdc
2

1 V3

2

1 V2

1

2

Vs100 Vac

0 Vdc AC PHASE 5 120

(a)

1

2

Is10 Aac

0 Adc AC PHASE 5 30

(b)

FIGURE 1.9

Circuit symbols 
for (a) ac voltage 

source; (b) ac 
current source.
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I1
3 Adc

I2
5 Adc

I3
8 Adc

FIGURE 1.11

An equivalent  
current source.

Redraw the circuit shown in Figure 1.12 with one voltage source and one current source, without affecting the 
voltages across and currents through the resistors in the circuit.

EXAMPLE 1.4

I1
3 mA

2 mA

I2

1

2

12

5 V

3 V

V1

R1

3 kV

R2

4 kV

R3

6 kV

V2

0

FIGURE 1.12

Circuit for 
EXAMPLE 1.4.

Since V1 and V2 are part of a single wire, they can be combined into the single voltage 
source V3. Since V2 has the same polarity as V1, the value of V3 is given by

V3 5 V1 1 V2 5 5 V 1 3 V 5 8 V

Since I1 and I2 are connected between the same points in the circuit, they can be 
combined into the single current source I3. Since I2 has the same polarity as I1, the value 
of I3 is given by

I3 5 I1 1 I2 5 3 mA 1 2 mA 5 5 mA

The equivalent circuit, with one voltage source and one current source, is shown in  
Figure 1.13.

continued

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 1.4  Independent Sources   13

I1
5 mA

1

2
8 V

V1

R1

3 kV

R2

4 kV

R3

6 kV

0

FIGURE 1.13

A circuit with one 
current source and 
one voltage source. 

Example 1.4 continued

Exercise 1.4

Redraw the circuit shown in Figure 1.14 with one voltage source and one current source, without affecting the 
voltages across and currents through the resistors in the circuit.

I1
3 mA

I2
2 mA

1 2

7 V

V1

R1

2 kV

R2

2 kV

R3

4 kV

2 V

V2

1

2

0

FIGURE 1.14

Circuit for 
EXERCISE 1.4.

I3
1 mA

1

2
5 V

V3

R1

2 kV

R2

2 kV

R3

4 kV

0

FIGURE 1.15

A circuit with one 
current source and 
one voltage source.

Answer:
The equivalent circuit with one voltage source and one current source is shown in  
Figure 1.15.
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